Online заявка:
 
Подписка на новости
Введите E-mail *
Введите название компании 
Подписаться
 

Виды электрохимической коррозии

Приведенная схема работы гальванической пары лежит в основе электрохимической коррозии металлов и сплавов. Разные фазовые составляющие, присутствующие в структуре сплава, находясь в электролите, приобретают разные по величине и знаку электродные потенциалы. Чем больше различие в электродных потенциалах отдельных фазовых составляющих, тем активнее будет протекать коррозионный процесс и коррозионное разрушение сплава. Электрохимическая гетерогенность поверхности металла является причиной коррозии. Более коррозионностойкими являются сплавы со структурой однородного твердого раствора.

Однако даже в случае однородной структуры коррозия может развиваться за счет образования анодных областей из-за наличия межкристаллитной пористости, различия остаточных напряжений в отдельных зернах и других факторов.

Особенно сильно электрохимическая коррозия развивается в случае контакта в конструкции разнородных материалов с разными потенциалами (например, коррозия стальных деталей в контакте с медными или магниевых сплавов в контакте со сталью).

Иллюстрацией могут служить две стальные пластинки, одна из которых покрыта оловом, а другая цинком. Нарушение этих пленок приводит к тому, что из-за разности электродных потенциалов железо в пластинке с оловом становится анодом, а в пластинке с цинком, наоборот, катодом. Цинк, разрушаясь, защищает железо от коррозии. Этим объясняется долговечность строительной жести, домашних ведер, оцинкованных кузовных листов и др.

В случае однофазного материала, например чистого металла или однородного твердого раствора, коррозия распространяется равномерно по всей поверхности детали — происходит так называемая общая или равномерная коррозия .Большинство коррозионно-стойких сталей хорошо сопротивляются равномерной коррозии в агрессивных средах. Высокая устойчивость сталей обусловлена их пассивным состоянием. Переход в пассивное состояние происходит самопроизвольно и связан с образованием на поверхности защитного субмикроскопического слоя с более высоким электродным потенциалом. Слой представляет собой сложный комплекс гидрооксидов. Состоянию пассивности способствует химическая устойчивость слоя в данном электролите и низкая проницаемость слоя для ионов.
В сталях пассивации способствует легирование хромом, содержание которого должно быть более 13 %.

При разрушении защитного слоя ионами Cl– коррозионностойкие стали теряют пассивные свойства. В таких случаях вместо сталей целесообразно использовать коррозионностойкие сплавы, например, никелевый сплав с 30 % молибдена.

Обработка, ведущая к гомогенизации структуры, делает сплав более устойчивым против электрохимической коррозии. Примером таких обработок является закалка хромоникелевой коррозионностойкой стали или отжиг оловянистых бронз, имеющих после литья неоднородное строение вследствие ликвации. Наоборот, нагрев сплавов, приводящий к распаду пересыщенного твердого раствора и выделению частиц второй фазы, снижает коррозионную стойкость. Разность потенциалов отдельных составляющих микроструктуры способствует электрохимической коррозии.

В неоднородных металлах коррозия носит местный характер, охватывая отдельные анодные участки их поверхности с низким значением электродного потенциала . Кместной коррозии относятся питтинг или точечная коррозия, пятнистая и язвенная ее разновидности. Очаги местной коррозии являются концентраторами напряжений.

Анодными участками могут быть границы зерен и фаз, в то время как сами зерна являются катодами. В этом случае развивается наиболее опасный вид коррозии —межкристаллитная коррозия (МКК). Она почти незаметна с поверхности и распространяется в глубь металла по границам зерен . В результате межкристаллитной коррозии нарушается связь между зернами, при постукивании по металлу пропадает характерный металлический звук, и после приложения нагрузки металл легко разрушается.

Межкристаллитная коррозия высокохромистой стали обусловлена выделением при повышенных температурах по границам зерен карбидов типа (Сr,Me)23С6 или Сr23С6. Эти карбиды образуются вследствие диффузии углерода из всего объема зерна, а хрома — только с приграничных областей. Углерод перемещается по межузельному механизму диффузии (по механизму внедрения), который по сравнению с перемещением атомов по механизму замещения характеризуется высокой подвижностью. Это приводит к снижению содержания хрома в приграничных областях ниже его критической концентрации 12–14 % и скачкообразному падению электродного потенциала с +0,2 до –0,6 В . Границы зерен становятся анодом по отношению к металлу внутри зерен.

Эффективным средством,подавляющим межкристаллитную коррозию высокохромистых сталей, является максимальное снижение содержания углерода и введение в сталь таких сильных карбидообразующих элементов, как титан или ниобий, обладающих бльшим сродством к углероду, чем хром.

При одновременном действии коррозионной среды и нагрузки или остаточных напряжений возникает коррозия под напряжением, проявляющаяся в виде коррозионного растрескивания или сетки трещин. Места концентрации напряжений имеют более низкий электродный потенциал и приобретают характер анодных участков.

Из жизненных ситуаций известно, что в поврежденных местах кузовов автомобилей, а также в местах деформаций, продукты коррозии появляются чаще всего. Высокие остаточные напряжения являются причиной ускоренной коррозии сварных швов, околошовной зоны, болтовых, заклепочных и других соединений.

Большое влияние на процесс коррозии в водных средах оказывает растворенный в жидкости кислород. При достаточном содержании кислорода на поверхности образуется защитная оксидная пленка, повышающая электродный потенциал металла. Наиболее опасные анодные зоны создаются в местах плохой аэрации, где затруднен доступ кислорода из воздуха. Хорошо известно, что та часть стальной плиты, которая находилась под слоем песка, коррозирует в большей степени по сравнению с той частью, которая оставалась под непосредственным влиянием атмосферы. Стальные гвозди в старых деревянных конструкциях разрушаются гораздо быстрее, чем их головки, расположенные снаружи. Аналогичное явление наблюдается в щелях замкнутых профилей (пример — пороги автомобилей), на стыке листов, на резьбовой поверхности в болтовых соединениях, на грязной поверхности и т. д.

Внутренние напряжения сами по себе не вызывают коррозии. Интенсифицируя это явление, они становятся инициаторами анодного процесса. Неоднородность внутренней структуры материала способствует коррозии. Коррозионные явления усиливаются при наложении анодной напряженности на структурную.